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Abstract. A planar double pendulum is defined by attaching two point masses together, with one of the point
masses being connected to a pivot point. It is an interesting dynamic system because of its tendency to exhibit
chaotic motion. Chaotic motion can be quantified using the Lyapunov exponent. If the Lyapunov exponent
is positive, the system is considered chaotic. If the Lyapunov exponent is negative, instead of being chaotic,
the system produces periodic motion. Extant research into the planar double pendulum indicates that as the
length ratio of a pendulum increases, the Lyapunov exponent increases. Previous research has determined that
at length ratio 1 : 1 (comparing the length of the upper arm to the lower arm) the pendulum’s motion is
periodic, while if the length ratio is increased to 1: 3, the pendulum’s motion is chaotic (Gupta et al., 2014).
Building on Gupta et al. (2014)’s results, this research aimed to increase the precision of the measured length
ratio representing the transitional point between periodic and chaotic motion. A computational simulation that
provided a numerical solution to the Euler-Lagrange equations of the pendulum was used to determine the
Lyapunov exponent for differing length ratios. The results demonstrated that the transitional length ratio lies
between 1: 2.34375 and 1: 2.375, an increase in precision by a factor of 64 compared to the current bound
established by extant research.

1 Literature Review

1.1 The Planar Double Pendulum
System

A planar double pendulum is defined by attaching
two point masses with a rigid, weightless rod, with
the top point mass connected to a pivot point with a
second rigid, weightless rod as seen in Figure 1 (Levien
and Tan, 1993). The length ratio of a pendulum is
expressed as L1 : L2. A pendulum is a Hamiltonian
system, meaning its gravitational potential energy and
kinetic energy is constantly exchanged and conserved
throughout its motion (Biglari and Jami, 2016). Most
importantly, the system has tendencies to produce
chaotic motion (Richter and Scholz, 1984; Safitri et al.,
2020).

1.2 The Phase Space

The phase space is an important mathematical tool
that is used when describing a system’s motion. In this
research, the computational simulation was defined
within a phase space coordinate set. A system’s phase
space is the graphical interpretation of the canonical
coordinates that encode all possible physical states of
the system (Nolte, 2018). As the system moves with
time, a path is ‘traced’ within phase space, known
as the phase space trajectory (Nolte, 2018). Every
degree of freedom of the system is represented as a
dimension of the multidimensional phase space (Nolte,

2018). In the case of a pendulum, these dimensions
are θ1, θ2, θ̇1, θ̇2 (Levien and Tan, 1993), using the
convention ḟ = ∂

∂t [f(t)].

Figure 1
Diagrammatical representation of a
pendulum system.
(Wikipedia, 2021).

1.3 Chaotic Motion and the Lyapunov
Exponent

The Lyapunov exponent (λ in (1)) has proven to
be the most useful quantification of chaos, and as
such was used to quantify chaos in this research.
A system is chaotic when λ > 0, and is periodic
(motion repeated at set intervals) when λ < 0

(Wolf et al., 1985). Qualitatively, chaos is the
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physical phenomenon where a dynamic system is
highly dependent on its initial conditions, and its
motion is seemingly random (Gupta et al., 2014). λ is
defined as the average exponential rate of divergence of
infinitesimally close orbits in phase space (Wolf et al.,
1985). Infinitesimally close orbits within phase space
correspond to nearly identical physical states, hence an
exponential divergence of these orbits implies a rapid
loss of predictability of the system (Shivamoggi, 1997).

(1) λ := lim
t→∞

[
lim

∥δZ0∥→0

[
1

t
ln

∥δZ0(t)∥
∥δZ0∥

]]

Formal definition of the Lyapunov
exponent for a dynamic system.
(Wolf et al., 1985).

Danforth’s algorithm1 (Danforth, 2017) which
determines λ (summarised by (2)) has been used
to quantifythe chaos of a pendulum (Gupta et al.,
2014; Levien and Tan, 1993). Despite the studies’
use of Danforth’s algorithm, none of them presented
a complete and easily repeatable method for the
algorithm. Therefore, this paper includes a repeatable
summary of Danforth’s algorithm for calculating λ of a
pendulum in subsection 4.3, with the algorithm being
generalised to any dynamic system in the Appendix
(page 10).

(2) λi(t) =
1

t

t∑
n=1

ln
∥∥yi

n

∥∥
Equation of the i-th largest Lyapunov
exponent as a function of time.
(Danforth, 2017)

As per the details of Danforth’s algorithm in the
Appendix (page 10), it is suggested that in order for λ
of a pendulum to be calculated, α = θ1, θ2, θ̇1, θ̇2 with
the set

{−−→
εyα0

}
being the set of vectors in (3).

(3) lim
ε→0




ε
0
0
0




0
ε
0
0




0
0
ε
0




0
0
0
ε




Column vector set for displacement
vectors at the limit ε → 0.

1.4 The Principle of Least Action

Rather than utilising Newton’s second law of
motion F = dp

dt , the principle of least action was
used to formulate the pendulum’s simulation and
Euler-Lagrange equations (Gray, 2009). Feynman
et al. (1964)’s definition of the principle of least action
is “the average kinetic energy less the average potential
energy is as little as possible for the path of an
object going from one point to another”. The action
functional Si of a pendulum is:

(4)
∫ t1

t0

1

2
mθ̇2i −mgθi dt

Action functional between the time
period t1 and t2 for a pendulum
system.
(Gray, 2009).

This functional is relatively simple to compute
numerically compared to the forces and acceleration
of the masses. The actual path that is taken by the
masses is that which minimises the action integral
(Feynman et al., 1964; Gray, 2009). One consequence
of this is the Euler-Lagrange equation seen in (5).

(5)
d

dt

∂L
∂θ̇i

− ∂L
∂θi

= 0

The Euler-Lagrange equations for a
pendulum system.
(Deyst, 2003).

1.5 Extant Research

Extant research into the pendulum has predominantly
been through the use of a computational simulation.
This is due to the pendulum’s sensitivity to its initial
conditions, hence making it very challenging for a built
model to undergo a valid testing method that can be
reliably repeated.

Biglari and Jami (2016) provide information regarding
the Kolmogorov–Arnold–Moser theorem. This
theorem must be considered as it suggests that for
certain initial conditions, the system may exhibit
quasi-periodic motion, which is neither periodic nor
chaotic. The theorem states that at low energies

1This algorithm has been adapted from Danforth’s lecture Numerical Calculation of Lyapunov Exponents and his lecture notes 5.2
Numerical Calculation of Lyapunov Exponents. However, the algorithm had been well-researched before this lecture was presented
in 2017, and has been used to calculate λ previously.
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(in the region of length ratio 1: 1 to 1: 3), the
pendulum system’s Euler-Lagrange equations may be
integrable, meaning that if the phase space trajectory
is subjected to a weak nonlinear perturbation, a
portion of the invariant torus survives. This torus
is the topological surface on which the phase space
trajectory is bounded. Hence in this investigation, the
motion of the pendulum near the transition point was
investigated for possible quasiperiodicity, which can be
seen if λ falls within the approximate range of 0±0.05.

A study into the pendulum system by Stachowiak
and Okada (2006) analysed the chaos of the system
through the Lyapunov exponent. The study chose to
investigate the dynamics of a pendulum in regard to
its total energy E, and provided the knowledge that
there is a clear boundary between periodic and chaotic
motion at E ≈ 4.46. This suggests that there are
specific characteristics of a pendulum that makes it
chaotic.

A study conducted Levien and Tan (1993) provides
valuable information on λ as the initial angle increases.
It was found that the system is chaotic if θ1(0) > π

3 .
This again showcases a specific characteristic of the
pendulum system that makes it chaotic.

Gupta et al. (2014) explores the chaotic behaviour
of a pendulum numerically. The simulation used
by Gupta et al. (2014) was a MATLAB simulation,
allowing them to measure how the mass and length
ratios influenced the chaos of the system. It found
that λ increases when the mass ratio is increased.
It was also found that λ increases when the length
ratio is increased, with the system being periodic at
length ratio 1: 1 and chaotic at 1: 3. However, the
researchers did not find a more precise length ratio at
which the system transitions from periodic to chaotic
motion. This research was designed as a follow on
to Gupta et al. (2014)’s paper, with the goal being
to increase the precision of the measured length ratio
representing the transitional point between periodic
and chaotic motion, referred to as the ‘transitional
length ratio’ in this research.

2 Research Question

As the length ratio of a planar double pendulum
increases (with initial small angle displacements), at
what precise length ratio does the system transition
from periodic to chaotic motion?

3 Hypothesis

That the length ratio at which a planer double
pendulum system transitions from periodic to chaotic
motion can be more precisely determined within the
bound of 1: 1 and 1: 3 as established by extant
research.

4 Methodology

4.1 Modelling the Dynamics of a
Pendulum

The reasoning for this modelling was to determine
the Euler-Lagrange equations of a pendulum system.
These two equations (one for each mass) govern the
dynamics of the masses, and formed the basis of the
computational simulation. Some simplification steps
have been omitted in the modelling for the sake of
brevity, but all equations are accurate to the dynamics
of the pendulum system.

The key initial conditions that must be defined for
this system are the length of the pendulums’ arm (Li

in metres), the point masses’ mass (mi in kilograms)
and the angular displacement from the vertical of the
two masses (θi in radians), where i = 1, 2 indexing the
two point masses. These are labelled in Figure 1.

The Lagrangian L for the system is known and is given
in (6).

(6)

L =
1

2
(m1 +m2) (L1)

2
(θ̇1)

2

+
1

2
m2 (L2)

2
(θ̇2)

2

+m2L1L2θ̇1θ̇2 cos (θ1 + θ2)

+ g (m1 +m2)L1 cos θ1

+ gm2L2 cos θ2

Using the Euler-Lagrange equation presented in (5),
the equations of motion of the two masses can be
obtained:
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(7)

S1 = L1

[
θ̈2L2m2 cos (θ1 − θ2)

+
(
θ̇2

)2

L2m2 sin (θ1 − θ2)

+ (m1 +m2)
(
g sin θ1 + L1θ̈1

)]
= 0

(8)

S2 = L2m2

[
−
(
θ̇1

)2

L1 sin (θ1 − θ2)

+ θ̈1L1 cos (θ1 − θ2)

+ θ̈2L2 + g (sin θ2)
]
= 0

Due to their non-linear nature, there is no known
method that solves the Euler-Lagrange equations
analytically. However, they can be computed
numerically using a computational program, one
example being the dsolve{<args>} function in the
Maplesoft computational simulator (Salisbury and
Knight, 2002) which was used in this research. This
method, however can provide some uncertainty within
the Lyapunov exponent calculation as a numerical
solution is not an exact solution to the differential
equations.

4.2 Computing the Transitional Length
Ratio Using the Bisection Method

In order to find precisely the transitional length ratio
(where the pendulum transitions from periodic to
chaotic motion), the bisection method was used. This
method has not been used previously in research into
a pendulum’s dynamics, but is a common method for
finding the zeros of polynomials. For this research,
this method can be thought of as trying to find the
length ratio that makes λ as close to 0 as possible
ie. the length ratio’s zero. During Test 1, the
known transitional length ratio bound is between 1: 1

and 1: 3 as established from extant research (Gupta
et al., 2014). The length ratio halfway between this
bound (ie. 1: 2) will be tested and determined to be
either chaotic or periodic. This will set a new bound
for the transitional length ratio. The length ratio
halfway between the new bound will then be tested,
‘telescoping’ the transitional length ratio to its precise
value after repeating multiple times.

4.3 Steps Taken to Calculate The
Lyapunov Exponent for Differing
Length Ratios Using Danforth’s
Algorithm

1. Maplesoft computational program was
generated to simulate the motion of a double
pendulum system, using the Euler-Lagrange
equations S1 and S2, the initial conditions in
Table 1 and the dsolve{<args>} function.

2. Within the program, v0 was defined as the
vector representing the initial conditions of the
pendulum in the phase space of the pendulum
system.

3. Within the program, εyα
n where α = θ1, θ2, θ̇1, θ̇2

was defined as the basis displacement vectors
of the four dimensions of the phase space at
the limit as ε → 0.

4. Using the simulating program, the five
conditions (vn, εy

α
n) were iterated for a small

time step (0.01 seconds), generating vn+1 and
the four kα

n+1.

5. The largest magnitude of the difference
between the vectors vn+1 and kα

n+1 was
recorded, ie.

∥∥vn+1 − kα
n+1

∥∥ =
∥∥yα

n+1

∥∥.

6. The four kα
n+1 were orthonormalised using

GramSchmidt orthonormalisation, generating
the four εyα

n+1.

7. Steps 4 to 6 were repeated for 150 seconds
(ie. n = 15000) and λ(t) was calculated
utilising (2).

8. If λ was positive (ie. the system is chaotic),
Steps 1 to 7 were repeated for the length
ratio halfway between the tested ratio and
the closest known ratio that produces periodic
motion; if λ was negative (ie. the system is
periodic), Steps 1 to 7 were repeated for the
length ratio halfway between the tested ratio
and the closest known ratio that produces
chaotic motion.

9. Steps 1 to 8 were repeated six times, changing
the length ratio each time as outlined in Step
8.
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Table 1
Initial conditions used for the computational simulation.

Descritpion Symbol Value

Length of the top pendulum arm L1 1m
Length of the bottom pendulum arm L2 2m
Initial angular displacement of Mass 1 (in radians) θ1(0) 0.2
Initial angular displacement of Mass 2 (in radians) θ2(0) 0.2828
Initial angular velocity of Mass 1 θ̇1(0) 0s−1

Initial angular velocity of Mass 2 θ̇2(0) 0s−1

Mass of Mass 1 m1 1kg
Mass of Mass 2 m2 1kg
Local acceleration due to gravity g 9.8ms−2

5 Results

The Lyapunov exponent time series of each length
ratio was generated within the Maplesoft simulation,
producing the plots in Figure 2. These graphs show
the value of λ on the x-axis plotted against time t on
the y-axis for each of the seven tested length ratios.
While for each length ratio λ initially fluctuated (even
between positive and negative values) it then settled
to a more consistent value which was observed and
recorded to characterise the motion of the system.
More specifically, it was determined whether the
motion is periodic (λ < 0) and therefore if the length of
the second arm was to be increased, or chaotic (λ > 0)

and therefore the length of the second arm was to be
decreased. The plots follow the chronological order of
the length ratios which were tested, and demonstrate
the process by which the transitional length ratio was
’telescoped’ to a more precise measurement.

5.1 Visual Analysis

It can be observed that Figure 2a, 2c, 2e and 2f (on the
following page) have a negative Lyapunov exponent.
In contrast, Figure 2b and 2d show λ to be positive.
At length ratio 1: 2.359375 (Figure 2g) it cannot be
determined whether λ is positive or negative with
certainty.

5.2 Numerical Analysis

The average value of λ between the time period of 40s
to 150s was found within the Maplesoft computational
program, using the integral in Equation (9). The time
period of 40s to 150s was chosen as λ(t) becomes
relatively stable at t = 40, and the Maplesoft
simulation could not compute λ(t) for values > 150.
The average value, the value at t = 40 and the value
at t = 150 have been summarised in Table 1.

Table 2
Lyapunov exponent values for each length ratio evaluated through the Maplesoft computational
simulation. Unlike Figure 2, these are arranged in order of increasing length ratio, depicting the
change in λ occurring between 1: 2 and 1: 2.5.

Length Ratio
1: 2 1: 2.25 1: 2.3135 1: 2.34375 1: 2.359375 1: 2.375 1: 2.5

λ(t)

t = 40 -3.03 -1.42 -0.26 -0.47 -0.14 -0.45 0.53
t = 150 -3.22 -1.31 -0.32 -0.28 -0.02 -0.56 0.49

Average -3.18 -1.40 -0.29 -0.24 0.05 0.37 0.51

Interpretation Periodic Periodic Periodic Periodic Quasi-Periodic Chaotic Chaotic
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2a

Test 1

1: 2
(a) Lyapunov Time Series for Length Ratio 1 : 2

λ: Negative

Interpretation:
Periodic

Action: Increase L2

2b

Test 2

1: 2.5
(b) Lyapunov Time Series for Length Ratio 1 : 2.5

λ: Negative

Interpretation:
Periodic

Action: Increase L2

2c

Test 3

1: 2.25
(c) Lyapunov Time Series for Length Ratio 1 : 2.25

λ: Positive

Interpretation:
Chaotic

Action: Decrease L2

2d

Test 4

1: 2.375
(d) Lyapunov Time Series for Length Ratio 1 : 2.375

λ: Positive

Interpretation:
Chaotic

Action: Decrease L2

2e

Test 5

1: 2.3125
(e) Lyapunov Time Series for Length Ratio 1 : 2.3125

λ: Negative

Interpretation:
Periodic

Action: Increase L2

2f

Test 6

1: 2.34375
(f) Lyapunov Time Series for Length Ratio 1 : 2.34375

λ: Negative

Interpretation:
Periodic

Action: Increase L2

2g

Test 7

1: 2.359375
(g) Lyapunov Time Series for Length Ratio 1 : 2.359375

λ: Undetermined

Interpretation:
Quasi-Periodic

Action: Stop Tests

Figure 2
Lyapunov exponent time series for initial length ratio of 1: 2 to length ratio 1: 2.359375.
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(9)
∫ 150

40

λ(t) dt

110

Expression to find the average value
of λ(t) between the time period 40s
to 150s.

Using the data in Table 1, Figure 2 shows the
relationship between the average Lyapunov exponent
and the length ratio, expressed as the fraction L2÷L1.

Figure 3
A plot of the average Lyapunov
exponent as a function of the length
ratio (expressed as the fraction L2 ÷
L1). It is important to note
that λ and L2 ÷ L1 are both
dimensionless quantities, hence no
units are required.

6 Discussion

As per the literature review, if λ is < 0, the system is
periodic, and if λ is > 0, the system is chaotic (Wolf
et al., 1985). From the visual and numerical analysis
of the Lyapunov exponent times series, between the
length ratios 1: 2 to 1: 2.34375, λ was negative and
so the pendulum system was periodic. Furthermore,
it was shown both visually and numerically that
at length ratios between 1: 2.375 and 1: 2.5, the
pendulum system was chaotic as λ was > 0. It can be
inferred that the transitional length ratio lies between
the length ratio of 1: 2.34375 (the upper bound of
periodic motion) and 1: 2.375 (the lower bound of
chaotic motion). This represents an improvement in
precision of determining the transitional length ratio
by a factor of 64 times in comparison to extant research
(Gupta et al., 2014). As there was uncertainty in
whether λ was positive or negative in Figure 2g, it
was concluded that at the length ratio 1: 2.359375,
the pendulum produced quasiperiodic motion.

From the plot in Figure 3, it can be observed that
there was a positive association between the Lyapunov

exponent and the length ratio, however an exact
linear correspondence between the two variables was
not evident from the data. One reason this could
arise is due to errors within the Lyapunov exponent
calculation. However, this was not likely to be
the cause of this nonlinear correspondence, as the
computation simulation provided a numerical solution
of the Euler-Lagrange equations that were accurate
to 1 part per 106 (MapleSoft, 2012). The exact
uncertainties of the Lyapunov exponent calculations
are quite hard to derive, however they could be
investigated in future research. Another explanation
for this non-linear correspondence is that the two
variables (length ratio and λ) are correlated through
a third variable, which may cause a change in both λ

and the length ratio.

One possible candidate of this third variable is the
total energy E of the system, which is increased as the
length ratio increases (Stachowiak and Okada, 2006).
Furthermore, there is evidence that there is a clear
boundary between periodic and chaotic motion at E ≈
4.46 (Stachowiak and Okada, 2006). E is generally
expressed as

∑
i [Ui +Ki] (OpenStax, 2016). As the

system is a Hamiltonian (Assencio, 2014), E stays
constant throughout the motion of the pendulum.
Furthermore within this research, at t = 0,K = 0.
Because dE

dL2
= −gm2 cos θ2 = 9.41 > 0, it is clear that

when the length ratio is increased, the total energy of
the system also increased.

It is proposed that the more energy the pendulum
system has, the more likely it will be chaotic. This
is because the phase space velocity will have a larger
magnitude, and hence a slight perturbation to the
phase space trajectory will have a larger proportional
influence on the system. This may cause the phase
space trajectory to diverge from its original path, ie.
produce chaotic motion (Wolf et al., 1985).

Further research into the planar double pendulum
might investigate the total energy of the system in
two ways. The length ratio could be varied while
ensuring that the total energy of the system stays
constant throughout the tests. This can be achieved by
changing a variety of variables (m, θ, θ̇). If λ remains
constant when the length ratio is changed and the
total energy of the system is kept constant, it can
be proposed that the length ratio is not the cause of
the changing λ observed in this research. However, a
relationship between E and λ would also need to be
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investigated. This can be done by keeping the length
ratio constant and varying E. A proposed method
would be to provide one mass with differing initial
angular velocity, rather than the zero initial angular
velocity that was used in this research.

It is most likely that the reason for a pendulum’s
chaotic motion is a combination of all the factors
discussed above, however this is not yet clear from
known research Chen (2008).

Finally, this research only focused on length ratios
between 1: 1 and 1: 3. However at the limit as L2 →
∞, the planar double pendulum system can be thought
of as a planar pendulum system (ie. only one mass on
one rod), which is a periodic system (Parks, 2000).
This suggests there is another transitional length
ratio, where the pendulum transitions from chaotic to
periodic motion. A conclusion that can be drawn from
this is that there may be a finite range of length ratios
of a double pendulum system that produce chaotic
motion, which could be investigated in future research.

To summarise, it is proposed that the increase in
length ratio may not solely be the cause of the increase
in λ. Other qualities of the system, specifically the
total energy E, should now be researched in order to
determine if there are additional factors influencing
the system’s chaotic motion.

7 Conclusion

My research project explored the transitional length
ratio between periodic and chaotic motion of a planar
double pendulum system. Through the use of a
computational simulation of a double pendulum, the
chaos of the system was quantified and analysed
through calculating the Lyapunov exponent (the
accepted measure of chaotic motion). Previous
research determined that the transitional length ratio
lies between the bound of 1: 1 and 1: 3. The
bisection method was used to increase the precision
of this measurement, and it was determined that the
transitional length ratio occurs between 1: 2.34375

and 1: 2.375, improving the precision of this
measurement by a factor of 64 times. In doing so,
my hypothesis was supported, that is, the precision
of the transitional length ratio value can be increased
from the bound established in current research.
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Appendix – Summary of Danforth (2017)’s Algorithm for Computing the Lyapunov
Exponent

1. Define v0 as the vector representing the initial condition of the system in an i-th dimensioned phase
space (ie. v0 ∈ Ri ).

2. Take a unit ball U0 in Ri defined by the orthonormal basis set
{
ŵ1

0, ŵ
2
0, ŵ

3
0, . . . ŵ

i
0

}2 with centre v0.

3. Define the set {ϵyα
0 } (α = 1, 2, 3, . . . i) as the sum of v0 and ŵα

0 .

4. Iterate the i+ 1 conditions {v0, {ϵyα
0 }} for a small time step, generating v1 and the set {kα

1 }. This will
transform U0 into an ellipsoid with centred at v1 and the set {kα

1 } lying on the ellipsoid’s surface.

5. Record the of the difference between the vectors v1 and {kα
1 }, ie. ∥v1 − kα

1 ∥ = ∥yα
1 ∥.

6. Orthogonalise the set {yα
1 } using Gram-Schmidt orthonormalisation to generate the set {ŵα

1 }. This
transforms the ellipsoid into a unit ball.

7. Take a unit ball U1 in Ri defined by the orthonormal basis set {ŵα
1 } with centre v1.

8. Define the set {ϵyα
1 } as the sum of v1 and ŵα

1 .

9. Repeat Steps 4 to 8 t times, and utilise Equation 2 to calculate λi(t).
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2Subscript indexes iteration; superscript indexes dimension of decreasing expansion direction in the system’s phase space vector
space.
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